Schulungsdozent*innen

Lernen Sie hier unsere Schulungsdozent*innen kennen.

Dario Antweiler

Fraunhofer IAIS

Dario Antweiler ist Data Scientist am Fraunhofer IAIS in Sankt Augustin im Geschäftsfeld Healthcare Analytics und betreut Projekte in den Themenbereichen KI in der Pharmakologie sowie Digitalisierung im Krankenhaus. Sein Forschungsfeld ist Machine Learning auf Graphen und Netzwerken.

Verena Battis

Fraunhofer SIT

Verena Battis ist Statistikerin und Volkswirtin und seit 2019 als wissenschaftliche Mitarbeiterin am Fraunhofer SIT tätig. Im Rahmen des Nationalen Forschungszentrum für angewandte Cybersicherheit ATHENE forscht sie an Risiken, die maschinelle Lernverfahren für die Privatheit des Einzelnen bedeuten können. Das Erkennen und Verhindern böswilliger Angriffe zählt ebenfalls zu ihrem Forschungsgebiet.

Lennard Bodden

Fraunhofer IAIS

Lennard Bodden ist seit Dezember 2020 Research Engineer im Team Computer Vision (Abteilung Netmedia) am Fraunhofer IAIS. Als Projektleiter für zwei mehrjährige Forschungsprojekte beschäftigt er sich vor allem mit der Entwicklung von effizienter KI für eingebettete Systeme.

Dr. Said Benjamin Bonakdar

Fraunhofer IAIS

Dr. Said Benjamin Bonakdar ist Volkswirt und seit 2022 als Data Scientist am Fraunhofer IAIS tätig. Hierbei übernimmt er die wissenschaftliche Begleitung des Schulungsangebotes und ist selbst als Dozent tätig. Im Rahmen seiner Promotion beschäftigte er sich intensiv mit Heterogeneous Multi Agent Models und georeferenzierten Big Data Problemen. Seine langjährige Erfahrung aus der Universitätslehre zeichnen ihn als erfahrenen Dozenten aus.

Niklas Bunzel

Fraunhofer SIT

Niklas Bunzel ist Wissenschaftler am Fraunhofer SIT, dessen Forschungsinteressen sich auf die Bereiche Künstliche Intelligenz (KI), Steganographie und IT-Sicherheit konzentrieren. Im Rahmen seiner Tätigkeit widmet er sich intensiv den Themen Robustheit beim maschinellen Lernen, KI-Standardisierung und -Gesetzgebung sowie der Erkennung von Deepfakes. Das zentrale Thema Robustheit von KI, bildet die Brücke zwischen seinen Hauptinteressen KI und IT-Sicherheit. In diesem Kontext untersucht er, wie maschinelles Lernen widerstandsfähiger gegenüber Angriffen und Fehlern gemacht werden kann.

Dr. Gunar Ernis

Fraunhofer IAIS

Dr. Gunar Ernis ist Geschäftsfeldleiter Industrial Analytics. Er hat in der Experimentellen Teilchenphysik promoviert und ist seit 2016 beim Fraunhofer IAIS als Data Scientist tätig. Er beschäftigt sich intensiv mit der Analyse von Daten im industriellen Umfeld (Industrie 4.0) und ist dort in mehreren Projekten aktiv, die sich mit Condition Monitoring und Predictive Maintenance befassen.

Dr.-Ing. Georg Fuchs

Fraunhofer IAIS

Dr.-Ing. Georg Fuchs ist Geschäftsfeldleiter Big Data Analytics and Intelligence am Fraunhofer IAIS. Er hat langjährige Erfahrung als Wissenschaftler in EU-, Grundlagen- und angewandten Forschungsprojekten sowie als Berater und Software Engineer in Industrieprojekten. Seine aktuellen Arbeitsschwerpunkte sind die visuelle Analyse von raum-/zeitbezogenen Daten mit besonderem Fokus auf Verfahren zur datenschutzkonformen semantischen Analyse von Bewegungsdaten.

Sujan Sai Gannamaneni

Fraunhofer IAIS

Sujan Sai Gannamaneni ist Data Scientist am Fraunhofer IAIS in Sankt Augustin im Team KI-Absicherung und -Zertifizierung. Seine Forschungsschwerpunkte sind die Entwicklung neuer Testmethoden für KI-Modelle mit dem Fokus auf die Identifizierung systematischer Schwächen in den Modellen. Er ist an Projekten zur Sicherstellung der Vertrauenswürdigkeit beim autonomen Fahren beteiligt.

Dr. Alexander Geng

Fraunhofer ITWM

Dr. Alexander Geng ist seit Abschluss seines Mathematikstudiums als wissenschaftlicher Mitarbeiter am Fraunhofer ITWM in Kaiserslautern in der Abteilung Bildverarbeitung tätig. Speziell beschäftigt er sich mit der Kombination von Quantencomputing, Bildverarbeitung und KI mit Fokus auf der Nutzbarkeit der aktuellen Quantenhardware.

Dr. Sandra Geisler

Fraunhofer FIT

Dr. Sandra Geisler hat an der RWTH Aachen Universität am Lehrstuhl Datenbanken und Informationssysteme promoviert und ist seit 2017 am Fraunhofer FIT tätig. Ihre Fachgebiete umfassen Datenökosysteme, Datenqualitätsmanagement, Datenstrommanagement, Sensordatenmanagement, Semantic Web und Datenintegration. Dabei fokussiert sie sich speziell auf die Anwendungsbereiche der Life Sciences und Industrie 4.0.

Sandra Geisler hat langjährige Lehrerfahrung an der RWTH Aachen Universität, sowie als Dozentin der Data Science-Zertifizierungskurse der Fraunhofer Allianz mit unterschiedlich großen Lerngruppen und Formaten.

Thore Gerlach

Fraunhofer IAIS

Thore Gerlach arbeitet als Research Scientist in der Abteilung Quantum Machine Intelligence am Fraunhofer IAIS.

Thore hat seinen B.Sc. in Mathematik und seinen M.Sc. in Computer Science absolviert.  Er beschäftigt sich sowohl mit nützlichen Einsatzgebieten von Quantencomputing/-optimierung im Maschinellen Lernen als auch mit der Optimierung von Quantenhardware mit Maschinellem Lernen. 

Dr. Annika Hänsch

Fraunhofer MEVIS

Dr. Annika Hänsch hat in Oldenburg Mathematik und in Lübeck Mathematik in Medizin und Lebenswissenschaften studiert. Ihr Forschungsschwerpunkt ist die Deep Learning-basierte Bildanalyse, insbesondere der Einfluss heterogener Eingabedaten, zu dem sie 2021 an der Jacobs University Bremen promovierte.

Henrik Heymann

Fraunhofer IPT

Henrik Heymann arbeitet als Data Scientist in der Abteilung Produktionsqualität am Fraunhofer IPT in Aachen. Seine Projekterfahrung umfasst den Einsatz von Machine Learning (ML) in zahlreichen verschiedenen Produktionsdomänen. Zu seinem Forschungsgebiet zählt die systematische Umsetzung von Predictive Quality und Predictive Maintenance in produzierenden Unternehmen.

Univ.-Prof. Dr.-Ing. habil. Marco Huber

Fraunhofer IPA

Prof. Marco Huber ist Inhaber der Professur für Kognitive Produktionssysteme an der Universität Stuttgart. Zugleich leitet er die Abteilung Bild- und Signalverarbeitung sowie das Zentrum für Cyber Cognitive Intelligence (CCI) am Fraunhofer IPA in Stuttgart. Seine Forschungsarbeiten konzentrieren sich auf die Themen Maschinelles Lernen, erklärbare Künstliche Intelligenz (xAI), Sensordatenanalyse, Bildverarbeitung und Robotik im produktionstechnischen Umfeld.

Dr.-Ing. Andreas Jedlitschka

Fraunhofer IESE

Dr. Andreas Jedlitschka ist Abteilungsleiter Data Science am Fraunhofer IESE in Kaiserslautern.

 

Dr. Abderrahmane Khiat

Fraunhofer IAIS

Abderrahmane Khiat ist Leiter des IoT-Integrationsteams  am Fraunhofer IAIS und verantwortlich für die strategische Ausrichtung und Portfolioentwicklung des Teams.

Er hat einen Ph.D. in Informatik und arbeitet seit 2019 als Knowledge Engineer und Projektleiter am Fraunhofer IAIS. Er beschäftigt sich intensiv mit Datenmodellierung und Standardisierung (Industrie 4.0) und ist in mehreren Projekten zum Thema Datenintegration aktiv.

Birgit Kirsch

Fraunhofer IAIS

Birgit Kirsch ist seit 2017 als Data Scientist im Team Natural Language Understanding am Fraunhofer IAIS in Sankt Augustin tätig.

Sie betreut KI-Projekte zur Dokumentenverarbeitung, unter anderem in den Bereichen Legal und Finance und forscht an Verfahren zur Informationsextraktion aus semistrukturierten Dokumenten.

Kilian Kleeberger

Fraunhofer IPA

Kilian Kleeberger ist seit 2017 als wissenschaftlicher Mitarbeiter in der Abteilung Roboter- und Assistenzsysteme am Fraunhofer IPA tätig. Seine Forschungsarbeiten konzentrieren sich auf die Themen Maschinelles Lernen, Bildverarbeitung, Robotik und Simulationen. Spezialisiert ist er auf die roboterbasierte Vereinzelung chaotisch bereitgestellter Objekte (»Griff-in-die-Kiste«).

Dr. Michael Kläs

Fraunhofer IESE

Dr. Michael Kläs ist seit Abschluss seines Informatikstudiums in der angewandten Forschung tätig und berät Unternehmen in den Bereichen Softwarequalität und Datenanalyse am Fraunhofer IESE. Im Laufe der letzten Dekade verantwortete er in zahlreichen Industrie- und Forschungsprojekten insbesondere den Aufbau von KPI-Systemen, die Evaluation neuer Technologien und die Entwicklung prädiktiver Analysen. In seiner Dissertation beschäftigte er sich mit der Vorhersage von Softwarefehlern unter Einbeziehung von Expertenwissen. Aktuell liegt sein Schwerpunkt im Bereich der Potenzialanalyse für datengetriebene Innovation und der Datenqualitäts- und Unsicherheitsanalyse bei Big-Data- und KI-Systemen. Als Autor zahlreicher Fachpublikationen engagiert er sich zudem als Hochschuldozent und als Experte bei der Normierung (DIN/VDE).

Farina Kock

Fraunhofer MEVIS

Farina Kock studierte Mathematik an der Universität Bielefeld und Cognitive Science mit Schwerpunkten Künstliche Intelligenz und Neuroinformatik an der Universität Osnabrück. Seit 2020 arbeitet sie als wissenschaftliche Mitarbeiterin am Fraunhofer MEVIS mit einem Schwerpunkt auf Deep Learning und Bildanalyse. 

Dr. Jörn Kohlhammer

Fraunhofer IGD

Dr. Jörn Kohlhammer ist Abteilungsleiter der Abteilung »Informationsvisualisierung und Visual Analytics« am Fraunhofer IGD. Er hat langjährige Erfahrung in den Gebieten Visual Analytics und Visual Business Intelligence. Seine Abteilung beforscht unter anderem Techniken für die entscheidungsorientierte Informationsvisualisierung unter Nutzung von Semantik und automatischen Analysen.

Jonathan Krauß

Fraunhofer IPT

Jonathan Krauß ist Leiter der Abteilung für Produktionsqualität am Fraunhofer IPT in Aachen. In über 20 Projekten hat er gemeinsam mit Industriepartnern Fertigungssysteme mithilfe von Maschinellem Lernen und Künstlicher Intelligenz verbessert. Forschungsseitig liegt sein Fokus auf Automated Machine Learning sowie Hyperparameter Tuning.

 

 

Alexander Mattern

Fraunhofer IPT

Alexander Mattern arbeitet als wissenschaftlicher Mitarbeiter am Fraunhofer-Institut für Produktionstechnologie in Aachen. Innerhalb von Forschungs- und Industrieprojekten optimiert er mithilfe von Machine Learning Produktionsprozesse. Dabei beschäftigt er sich insbesondere mit dem Einsatz von Deep Learning zur Defekterkennung auf beschichteten Oberflächen

Emmy Lai

Fraunhofer IAIS

Seit August 2023 bereichert Emmy Lai als Data Scientist und wissenschaftliche Mitarbeiterin das Team Natural Language Understanding (NLU) am Fraunhofer IAIS in Sankt Augustin. In ihrer Funktion als Projektleiterin betreut sie eine Vielzahl von Projekten sowohl in der Industrie als auch in der Forschung. Im Rahmen ihrer Promotion erforscht sie das faszinierende Feld der "Autonomous Agents" durch den Einsatz von generativer KI in Projektprozessen.

Lars Leyendecker

Fraunhofer IPT

Lars Leyendecker ist Doktorand am Fraunhofer-Institut für Produktionstechnologie IPT in Aachen. Er hat mehrjährige Erfahrung in der Datenanalyse und der Anwendung von maschinellem Lernen in Produktionssystemen. In seiner Dissertation erforscht er, wie sich Produktionsprozesse durch Bayes’sche Optimierung dateneffizient optimieren lassen

 

Dr. Thorsten May

Fraunhofer IGD

Dr. Thorsten May ist Leiter der Forschungsgruppe »Visual Analytics« am Fraunhofer IGD. Sein Forschungsschwerpunkt ist die Verbindung von Visualisierungstechniken mit automatischen Verfahren für die explorative Analyse multivariater und zeitbezogener Daten sowie deren Anpassung an verschiedene Anwendungsgebiete.

 

PD Dr. Michael Mock

Fraunhofer IAIS

PD Dr. Michael Mock ist Senior Scientist am Fraunhofer IAIS. Seine Forschungsinteressen fokussieren auf verteilte Systeme und Echtzeitsysteme. Er hat langjährige Erfahrung in der Leitung von Forschungs- und Entwicklungsprojekten sowie in der Lehre als Privat-Dozent. Aktuelle Arbeitsschwerpunkte sind echtzeitfähige Architekturen im Big-Data-Bereich. Er hat außerdem die stellv. Konsortialführung und wissenschaftliche Projektkoordination im Projekt »KI-Absicherung« inne.

Dr Ali Moghiseh

Fraunhofer ITWM

Dr. Ali Moghiseh ist seit 2007 als wissenschaftlicher Mitarbeiter am Fraunhofer-Institut für Techno- und Wirtschaftsmathematik (ITWM) in Kaiserslautern in der Abteilung Bildverarbeitung tätig. Seine Forschung konzentriert sich auf mathematische Algorithmen für die Bildverarbeitung sowie auf maschinelles Lernen. Seit 2020 erforscht er Anwendungen des Quantencomputings in der Bildverarbeitung. Dr. Moghiseh leitet ein Team von Forschern, die sich auf Quantenalgorithmen in der Bildverarbeitung spezialisiert haben.

Dr. Gerhard Paaß

Fraunhofer IAIS

Dr. Gerhard Paaß ist als Senior Scientist am Fraunhofer IAIS tätig und verfügt über langjährige Erfahrung als Projektleiter von angewandten Forschungs- und Wirtschaftsprojekten sowie als Dozent an den Universitäten Bonn, Leipzig und Brisbane. Er gründete die Textmining-Gruppe am Fraunhofer IAIS und ist maßgeblich an der Entwicklung von Verfahren zur semantischen Analyse von Texten beteiligt. Aktuelle Arbeitsschwerpunkte sind Informationsextraktion, Textklassifikation sowie semantisches Lernen durch Large Language Models. Er hat die Grundlagen tiefer Neuronaler Netze in der Monographie »Künstliche Intelligenz - Was steckt hinter der Technologie der Zukunft?« (https://link.springer.com/book/10.1007/978-3-658-30211-5) beschrieben und einen Überblick über aktuelle Sprachmodelle unter dem Titel »Foundation Models for Natural Language Processing - Pre-trained Language Models Integrating Media« (https://link.springer.com/chapter/10.1007/978-3-031-23190-2) als Open Access Buch bei Springer-Nature publiziert.

Nathalie Paul

Fraunhofer IAIS

Nathalie Paul ist Mathematikerin und als Data Scientist am Fraunhofer IAIS im Geschäftsfeld Industrial Analytics tätig. Sie beschäftigt sich vorwiegend mit der Datenanalyse und Prozessoptimierung im Bereich der Produktion. Ihr Forschungsschwerpunkt ist die Kombination von Maschinellem Lernen und Operations Research.

Dr. Maximilian Poretschkin

Fraunhofer IAIS

Dr. Maximilian Poretschkin

Dr. Maximilian Poretschkin ist promovierter Physiker und Gruppenleiter am Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS und verantwortet dort die Aktivitäten im Bereich Absicherung, Prüfung und Standardisierung von Künstlicher Intelligenz. Seine Forschungsinteressen umfassen schwerpunktmäßig die Entwicklung von Kriterienwerken und Werkzeugen für die Prüfung von KI-Systemen. Zusammen mit seiner Forschungsgruppe hat er einen der ersten KI-Prüfkataloge veröffentlicht, welcher mittlerweile Grundlage für viele KI-Prüfungen ist.

Dr. Poretschkin hat langjährige Erfahrung in der Leitung von Projekten im Bereich der vertrauenswürdigen KI mit weltweiten Industriepartnern und berät Organisationen und Behörden zu dieser Thematik. Besonders hervorzuheben ist die Konsortialleitung des Projekts ZERTIFIZIERTE KI, welches zusammen mit dem Bundesamt für Sicherheit in der Informationstechnik und dem Deutschen Institut für Normung sowie weiteren Partnern aus Forschung und Industrie Prüfgrundlagen für KI-Systeme entwickelt. Er hat zudem die Arbeitsgruppe „KI-Prüfung und -Zertifizierung“ innerhalb der Normungsroadmap KI von DIN und DKE geleitet.

Niclas Renner

Fraunhofer IAO

M. Sc. Niclas Renner arbeitet als Data Scientist seit 2019 am Fraunhofer IAO.

Im Rahmen von Forschungs- und Industrieprojekten beschäftigt er sich hauptsächlich mit dem produzierenden Gewerbe vom kleinen Unternehmen bis hin zum Großkonzern. In seiner Arbeit beschäftigt er sich hauptsächlich mit den Themen Zeitreihen und der Absicherung von KI, als Grundlage für kommende Gesetzgebung und Standardisierung- sowie Zertifizierungsbemühungen.

Ann-Katrin Riedel

Fraunhofer SIT

Ann-Katrin Riedel ist Bildverarbeiterin und am Fraunhofer SIT in Darmstadt wissenschaftliche Mitarbeiterin in der Abteilung Media Security und IT Forensics. Im Rahmen des Nationalen Forschungszentrums für angewandte Cybersicherheit ATHENE liegen die aktuellen Forschungsthemen im Bereich der Erkennung und Entwicklung neuer Angriffe auf Machine-Learning-Anwendungen auf Bilddaten.

Dr. Laura von Rüden

Fraunhofer IAIS

Dr. Laura von Rueden ist seit 2018 als Data Scientist am Fraunhofer IAIStätig und hat über das Thema Informed Machine Learning mit Anwendung in Autonomen Fahrsystemen promoviert. Zuvor war sie als IT Consultant für Big Data Analytics tätig. Bei Fraunhofer berät sie Unternehmen zum Einsatz von Künstlicher Intelligenz.

Anna Schmitz

Fraunhofer IAIS

Anna Schmitz hat zwei Masterstudiengänge in Mathematik absolviert und arbeitet am Fraunhofer IAIS als Data Scientist. Erfahrung als Dozentin für wissenschaftliche Themen hat sie u.a. als Kursleiterin auf Sommerakademien gesammelt. Aktuell fokussieren sich ihre Arbeitsschwerpunkte auf KI-Zertifizierung und vertrauenswürdige KI.

Dr. Benny Stein

Fraunhofer IAIS

KD

Dr. Benny Stein ist seit 2023 als MLOps Engineer am Fraunhofer IAIS tätig. Er hat als angewandter Mathematiker im Bereich Uncertainty Quantification promoviert und unterstützt nun mit seiner langjährigen Erfahrung in der Lehre und seinem Wissen über Machine Learning Operations das Data-Science-Schulungsprogramm als Dozent.

Der Schwerpunkt seiner Arbeit in Wirtschafts- und Forschungsprojekten liegt im Bereich der Bereitstellung und des Betriebs von generativen KI-Modellen als Teil des Machine Learning Lifecycles.

Daniel Steinigen

Fraunhofer IAIS

Daniel Steinigen ist Research Engineer am Fraunhofer IAIS in der Abteilung Net Media. Dort arbeitet und forscht er im Bereich Natural Language Processing (NLP) mit Spezialisierung auf Maschinellem Lernen und Wissensgraphen.

Dipl.-Math. Karl-Heinz Sylla

Fraunhofer IAIS

Dipl.-Math. Karl-Heinz Sylla arbeitet als Senior Scientist am Fraunhofer IAIS, ist System-Architekt und als Projektleiter von Wirtschafts- und Forschungsprojekten sowie als Seminarleiter und Referent zu Themen der Software-Konstruktion tätig. Aktuelle Arbeitsschwerpunkte sind die Architektur und Konstruktion von Big-Data-Systemen und deren anwendungsspezifische Ausprägung.

Dr. Adam Trendowicz

Fraunhofer IESE

Dr. Adam Trendowicz ist Senior Engineer in der Abteilung Data Science am Fraunhofer IESE in Kaiserslautern.

Er verfügt über langjährige Erfahrung in der quantitativen Analyse von Softwareprojekten und -produkten in unterschiedlichen Branchen. Er hat diverse Aktivitäten in den Bereichen Messen, Vorhersage und Verbesserung von Software in Softwareunternehmen unterschiedlicher Größe und in verschiedenen Domänen geleitet. In diesem Kontext hat er Vorhersagemodelle für Softwarekosten und -qualität entwickelt und empirisch validiert.

Derzeit liegt der Tätigkeitsschwerpunkt von Dr. Trendowicz auf Datenqualität und -vorbereitung im Kontext von Maschinellem Lernen sowie auf dem Lean Deployment von datengetriebenen Innovationen auf Basis von Lösungen aus den Bereichen Maschinelles Lernen und Künstliche Intelligenz.    

Anna Maria Vollmer

Fraunhofer IESE

Anna Maria Vollmer ist Senior Data Engineer am Fraunhofer IESE in der Abteilung Data Science. Seit ihrem Informatikstudium verantwortet sie dort insbesondere Evaluationen von Softwarelösungen, wie zuletzt in dem EU-Projekt Q-Rapids in Zusammenarbeit mit verschiedenen europäischen Partnern. Neben den Arbeiten in Forschungsprojekten gehören zu ihren Tätigkeiten auch Qualitätsbewertungen und die Mitentwicklung von daten-getriebenen Innovationen für Industriekunden.

Markus Völk

Fraunhofer IPA

Markus Völk ist seit 2019 wissenschaftlicher Mitarbeiter am Fraunhofer IPA, wo er sich in seiner Projekt- und Forschungsarbeit überwiegend mit Bildverarbeitung und Maschinellem Lernen beschäftigt. Der Anwendungsfokus seiner Arbeit in der Abteilung Roboter- und Assistenzsysteme am Fraunhofer IPA liegt dabei insbesondere im Bereich der Handhabung und Intralogistik.

Dr. Dennis Wegener

Fraunhofer IAIS

Dennis Wegener ist Teamleiter des MLOps Teams am Fraunhofer Institut IAIS in Sankt Augustin und betreut Projekte im Bereich der Umsetzung von Machine Learning Pipelines in Produkten und Services. Sein Forschungsschwerpunkt liegt auf der Schnittstelle zwischen Software Engineering, verteilten Systemen und Machine Learning Pipelines.

Dorina Weichert

Fraunhofer IAIS

Dorina Weichert ist Maschinenbauingenieurin und arbeitet und forscht am Fraunhofer IAIS im Bereich des Design of Experiments und der Bayesschen Optimierung. Am liebsten arbeitet sie mit Gaußschen Prozessen, die effizient wenige Daten mit Vorwissen zu einem vertrauenswürdigen Modell verknüpfen. Im Arbeitsalltag unterstützt sie im Industrial Analytics Team Fachexpert*innen bei der Versuchsplanung, Datenanalyse und Optimierung von Prozessen.

Dr. Ing. Markus Wenzel

Fraunhofer MEVIS

Dr.-Ing. Markus Wenzel ist seit 2005 beim Fraunhofer MEVIS in Bremen und forscht zu Machine-Learning-basierten Methoden im Bereich der Datenanalyse in der digitalen Medizin. Ein wesentlicher Schwerpunkt ist die Bildverarbeitung mit Deep Learning für die klinische Entscheidungsunterstützung.

Moritz Willmann

Fraunhofer ITWM


Moritz hat einen MSc in Computational Science and Engineering und arbeitet als Forscher im Bereich Quantencomputing am Fraunhofer IPA in Stuttgart. Seine Expertise umfasst sowohl klassisches maschinelles Lernen als auch Quantencomputing.


Dr. Tim Wirtz

Fraunhofer IAIS

Dr. Tim Wirtz ist promovierter Physiker und seit 2022 Leiter der Abteilung Enterprise Information Systems (EIS) am Fraunhofer IAIS in St. Augustin. Zuvor war Dr. Wirtz am IAIS mehrere Jahre als Data Scientist und stellvertretender Leiter der Abteilung Knowledge Discovery (KD) tätig. In seiner aktuellen Position widmet er sich der Entwicklung innovativer, datengetriebener Lösungen unter den Herausforderungen geringer Datenverfügbarkeit und hoher Datenerhebungskosten. Mithilfe einer Kombination aus Wissen, Experimenten, Simulationen und Künstlicher Intelligenz schafft seine Abteilung entscheidende Mehrwerte für Unternehmen und treibt die Forschung voran.

Dipl. Inf. Alexander Zimmermann

Fraunhofer IAIS

Alexander Zimmermann ist Senior-Projektleiter und Senior-IT-Consultant am Fraunhofer Institut IAIS in Sankt Augustin und betreut Projekte in diversen Data Science Themenbereichen. Er strebt hierbei insbesondere an, Unternehmen bei der operativen Umsetzung von ML-Lösungen zu unterstützen und seine Erfahrung aus vielen Jahren Softwareentwicklung vereint mit Beratungstätigkeit gewinnbringend einzusetzen.

Alexander Zorn

Fraunhofer IAIS

Alexander Zorn ist studierter Mathematiker und Informatiker und forscht am Fraunhofer Institut IAIS im Bereich MLOps und der Beratung von großen Sprachmodellen. Besonders gerne berät er bei dem Einsatz von großen Sprachmodellen mit Formaten wie dem Innovation Briefing Generative KI. Im Arbeitsalltag unterstützt er im MLOps Team Fachexpert*innen dabei KI Use Cases in die Anwendung zu bringen.